Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems.
نویسندگان
چکیده
Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) through anthropogenic activities. Although the effects of increased N inputs on plant communities have been reasonably well studied, few comparable studies have examined impacts on whole soil bacterial communities, though they play critical roles in ecosystem functioning. We sampled soils from two long-term ecological research (LTER) experimental N gradients, both of which have been amended with NH4NO3; a grassland at Cedar Creek (27 years of N additions) and an agricultural field at Kellogg Biological Station (8 years of N additions). By examining shifts in bacterial communities across these contrasting ecosystem types, we could test competing hypotheses about the direct and indirect factors that might drive bacterial responses to elevated N inputs. Bacterial community structure was highly responsive to N additions. We observed predictable and consistent changes in the structure of the bacterial communities across both ecosystem types. Our results suggest that bacterial communities across these gradients are more structured by N and/or soil carbon availability than by shifts in the plant community or soil pH associated with the elevated nitrogen inputs. In contrast to the pronounced shifts in bacterial community composition and in direct contrast to the patterns often observed in plant communities, increases in N availability did not have consistent effects on the richness and diversity of soil bacterial communities.
منابع مشابه
Soil bacterial diversity in a loblolly pine plantation: influence of ectomycorrhizas and fertilization.
We studied the effect of ectomycorrhizas and fertilization on soil microbial communities associated with roots of 10-year-old loblolly pine. Ectomycorrhizas were identified using a combination of community terminal restriction fragment profiling and matching of individual terminal restriction fragments to those produced from ectomycorrhizal clones and sequences recovered from roots and sporocar...
متن کاملVariability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils.
Fertilization affects bacterial communities and element biogeochemical cycling in flooded paddy soils and the effect might differ among soil types. In this study, five paddy soils from Southern China were subjected to urea addition to explore impacts of fertilization on nitrogen oxide (N2O) emission and bacterial community composition under the flooding condition. 16S rRNA gene-based illumina s...
متن کاملSoil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands
Global and regional environmental changes often co-occur, creating complex gradients of disturbance on the landscape. Soil microbial communities are an important component of ecosystem response to environmental change, yet little is known about how microbial structure and function respond to multiple disturbances, or whether multiple environmental changes lead to unanticipated interactive effec...
متن کاملMineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies
Soil management is fundamental to all agricultural systems and fertilization practices have contributed substantially to the impressive increases in food production. Despite the pivotal role of soil microorganisms in agro-ecosystems, we still have a limited understanding of the complex response of the soil microbiota to organic and mineral fertilization in the very long-term. Here, we report th...
متن کاملLong-term Fertilization Structures Bacterial and Archaeal Communities along Soil Depth Gradient in a Paddy Soil
Soil microbes provide important ecosystem services. Though the effects of changes in nutrient availability due to fertilization on the soil microbial communities in the topsoil (tilled layer, 0-20 cm) have been extensively explored, the effects on communities and their associations with soil nutrients in the subsoil (below 20 cm) which is rarely impacted by tillage are still unclear. 16S rRNA g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ecology
دوره 91 12 شماره
صفحات -
تاریخ انتشار 2010